首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11748篇
  免费   1326篇
  国内免费   300篇
电工技术   498篇
综合类   624篇
化学工业   4614篇
金属工艺   1892篇
机械仪表   363篇
建筑科学   557篇
矿业工程   309篇
能源动力   1185篇
轻工业   657篇
水利工程   40篇
石油天然气   194篇
武器工业   100篇
无线电   178篇
一般工业技术   1239篇
冶金工业   688篇
原子能技术   33篇
自动化技术   203篇
  2024年   53篇
  2023年   204篇
  2022年   328篇
  2021年   466篇
  2020年   445篇
  2019年   381篇
  2018年   306篇
  2017年   443篇
  2016年   390篇
  2015年   368篇
  2014年   694篇
  2013年   650篇
  2012年   845篇
  2011年   936篇
  2010年   695篇
  2009年   673篇
  2008年   622篇
  2007年   804篇
  2006年   751篇
  2005年   589篇
  2004年   552篇
  2003年   428篇
  2002年   353篇
  2001年   303篇
  2000年   268篇
  1999年   186篇
  1998年   141篇
  1997年   117篇
  1996年   95篇
  1995年   57篇
  1994年   52篇
  1993年   50篇
  1992年   45篇
  1991年   17篇
  1990年   12篇
  1989年   17篇
  1988年   11篇
  1987年   6篇
  1986年   5篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1981年   3篇
  1959年   1篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
41.
Through the simple precipitation of palygorskite (PGS) by zinc borate (ZB) (to make PGS@ZB) and the decoration of PGS@ZB by dodecylamine (N), a novel organic‐inorganic@inorganic hybrid flame retardant of PGS@ZB‐N was prepared and was incorporated with ethylene vinyl acetate copolymer (EVA) to improve its flame retardance. The structure and morphology of PGS@ZB‐N were characterized by Fourier transform infrared (FTIR) spectroscopy, X‐ray diffraction (XRD), and scanning electron microscopy (SEM), and it was confirmed that the PGS@ZB‐N hybrid had been successfully prepared. The flame retardancy and burning behavior of EVA/PGS@ZB‐N/EG (EG = expandable graphite) composite were studied through thermogravimetric analysis (TGA), limiting oxygen index (LOI), UL‐94 (by the vertical burning test), and cone calorimeter test (CCT) characterizations. The prepared EVA/PGS@ZB‐N/EG composite obtained an LOI value of 41.2% with the addition of 30 wt% PGS@ZB‐N/EG. It was found that EVA/PGS@ZB‐N/EG was protected through a gas phase and condensed phase alternating synergistic effect mechanism.  相似文献   
42.
采用水溶液聚合法制备了低分子量聚丙烯酸钾(PAAK),并作为新型消焰剂加入单基发射药中。通过火焰原子吸收光谱法测试了PAAK中钾的含量;用乌氏黏度计测定了特性黏度;采用DSC法研究不同pH值的PAAK与硝化棉(NC)的相容性;利用充氮氧弹法对添加PAAK、硝酸钾KNO3、硫酸钾K2SO4的单基发射药的燃烧残渣进行了对比研究。结果表明,合成的PAAK中,钾的质量分数为15.21%,相对分子量在3 000左右,有利于和NC均匀混合,且在中性或微碱性(pH=7.0~7.5)的情况与NC相容性良好。与传统的KNO3、K2SO4消焰剂相比,PAAK能够和NC均匀混合,制备均质透明的单基发射药;PAAK发射药的燃烧残渣最少,占发射药质量的0.18%。  相似文献   
43.
设计开发一种具有高通量、低流阻特征的空心锥喷嘴,并通过理论与实验方法研究空心锥喷嘴的喷淋性能,基于准自由涡理论建立空心锥喷嘴内部流体流动的数学模型,阐明流量系数、喷淋锥角、喷嘴流量与喷嘴结构参数之间的定量关系,并利用多效蒸馏海水淡化喷淋实验台对理论计算结果进行实验测试和验证。研究结果表明:正常工作状态下喷嘴流量系数、喷淋锥角、喷淋流量等参数理论值与测量值之间的误差小于5%,验证了设计模型的准确性。同时根据实验测试数据,拟合得到该类型空心锥喷嘴喷淋锥角与雷诺数之间的经验公式,可为蒸馏海水淡化用大流量空心锥喷嘴的结构设计、工艺选型提供理论指导和数据支持。  相似文献   
44.
Aluminum diethylphosphinate (ADP) was wrapped with polydimethylsiloxane (PDMS) by a facile method to improve its hydrophobic properties. The morphology and properties of PDMS-modified ADP (PDMS-ADP) were investigated by thermogravimetric analysis, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and water contact angle tests. The water contact angle of PDMS-ADP was increased from 126° to 151° as compared with that of ADP, which indicates that PDMS-ADP showed good hydrophobic properties. Then, ADP and PDMS-ADP were introduced into polyamide 6 (PA6) matrices to study the flame retardancy of the composites. The flammability of the PA6/ADP and PA6/PDMS-ADP composites was much lower than that of pure PA6. The composites PA6-1 (with the addition of 15 wt% ADP) and PA6-4 (with the addition of 12 wt% PDMS-ADP) could pass the UL-94 V-0 in the vertical burning test. Meanwhile, the peak heat release rates of PA6-1 and PA6-4 were 212 and 192 kW/m2, with reductions of 67.3 and 70.4%, respectively, compared with pure PA6. These results indicated that the coating of PDMS could enhance the flame-retardant efficiency of ADP.  相似文献   
45.
《Ceramics International》2020,46(8):12275-12281
Alumina and zirconia ceramic particles exhibit high hardness and excellent wear resistance at high temperature, and hence are used as ceramic reinforcement phases in some plasma sprayed coatings. In this study, the interface evolution of a zirconia/alumina eutectic ceramic and the phase transition of zirconia in a plasma-sprayed coating were investigated. Scanning electron microscopy and transmission electron microscopy combined with focused-ion beam and energy dispersive X-ray were used to analyze the microstructure and composition of the ceramic interface. The results showed that the eutectic ceramic particles consisted of alumina (outer) and columnar zirconia (inner) before and after the plasma spraying process. The inner zirconia part showed the martensitic transformation of t-type zirconia to stripe-like m-type zirconia. After the plasma spraying, the interface between alumina and zirconia changed significantly, which formed a new oxide layer. The phase transition mechanism in the ceramic particle and oxide layer formation mechanism at the alumina/zirconia interface were investigated.  相似文献   
46.
结合新工厂的应用经验,通过对"都林"机器人的喷涂方式、布局、雾化器配置选型、参数设置、仿形设计及品质控制要点等方面的分析,总结了连续式喷涂的优势及技术控制要求。  相似文献   
47.
Thermal barrier coatings (TBCs) play a pivotal role in protecting the hot structures of modern turbine engines in aerospace as well as utility applications. To meet the increasing efficiency of gas turbine technology, worldwide research is focused on designing new architecture of TBCs. These TBCs are mainly fabricated by atmospheric plasma spraying (APS) as it is more economical over the electron beam physical vapor deposition (EB-PVD) technology. Notably, bi-layered, multi-layered and functionally graded TBC structures are recognized as favorable designs to obtain adequate coating performance and durability. In this regard, an attempt has been made in this article to highlight the structure, characteristics, limitations and future prospects of bi-layered, multi-layered and functionally graded TBC systems fabricated using plasma spraying and its allied techniques like suspension plasma spray (SPS), solution precursor plasma spray (SPPS) and plasma spray –physical vapor deposition (PS-PVD).  相似文献   
48.
The flammability behaviors of ammonium polyphosphate/aluminum hydroxide/mica/silicone rubber (APP/Al[OH]3/mica/SiR) ceramifying composites containing APP, Al[OH]3, and mica are investigated by cone calorimeter test. The thermal degradation and the synergistic effect of APP/Al(OH)3/mica/SiR composites are investigated by thermal gravimetric analysis, X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. APP/Al(OH)3/mica/SiR composites with 25 wt% of APP, 20 wt% of Al(OH)3, 25 wt% of mica, and 30 wt% SiR presents a much lower total heat release, the value of peak heat release rate (PHRR), the maximum average heat release rate, the longest time to ignition, and time to the PHRR (tPHRR), compared with the flame-retardant properties from composites with filler of APP and mica or APP and Al(OH)3 alone. The results indicate that there is an excellent synergism in APP, Al(OH)3, and mica, which endows APP/Al(OH)3/mica/SiR composites with both good flame retardancy and fire prevention. The study on the synergism effect between fire prevention and flame retardancy of APP/Al(OH)3/mica/SiR composites indicates that compounds containing P-O-Al are formed due to the reaction between APP and Al(OH)3 during combustion in the early stage and a coherent, dense, and sealed structure is formed due to the reaction in mica, phosphates, and the thermal decomposition products of SiR during combustion in the later stage.  相似文献   
49.
ABSTRACT

Urea-formaldehyde (UF)/carboxylated carbon nanotubes (CNTs-COOH) nanocomposite foams were prepared via in-situ polymerization. Chemical bonding and hydrogen bonding interactions formed between CNTs-COOH and UF matrix. UF resin adhered onto the ektexine of CNTs-COOH and grafting ratio of 496.41% was achieved. UF/CNTs-COOH foam showed smaller cell size, narrower cell size distribution and lower water absorption compared with UF foam. Introduction of 0.25 wt% CNTs-COOH resulted in 58.43% increase in compressive strength. CNTs-COOH were pulled out with surface covered with UF resin under stress and the failure mode was the destruction of matrix around interfacial layer. UL-94V-0 rating was achieved for the composite foams.  相似文献   
50.
The greatest challenge for a feasible hydrogen economy lies on the production of pure hydrogen and the materials for its storage with controlled release at ambient conditions. Hydrogen with its great abundance, high energy density and clean exhaust is a promising candidate to meet the current global challenges of fossil fuel depletion and green house gases emissions. Extensive research on hollow glass microspheres (HGMs) for hydrogen storage is being carried out world‐wide, but the right material for hydrogen storage is yet underway. But many other characteristics, such as the poor thermal conductivity etc. of the HGMs, restrict the hydrogen storage capacity. In this work, we have attempted to increase the thermal conductivity of HGMs by ZnO doping. The HGMs with Zn weight percentage from 0 to 10 were prepared by flame spheroidization of amber‐colored glass powder impregnated with the required amount of zinc acetate. The prepared HGMs samples were characterized using field emission‐scanning electron microscope (FE‐SEM), environmental SEM (ESEM), high‐resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy and X‐ray diffraction (XRD) techniques. The deposition of ZnO on the microsphere walls was observed using FE‐SEM, ESEM and HRTEM which was further confirmed using the XRD and ultraviolet–visible absorption data. The hydrogen storage studies done on these samples at 200 °C and 10‐bar pressure for 5 h showed that the hydrogen storage increased when the Zn percentage in the sample increased from 0 to 2%. The percentage of zinc beyond 2, in the microspheres, showed a decline in the hydrogen storage capacity. The closure of the nanopores due to the ZnO nanocrystal deposition on the microsphere surface reduced the hydrogen storage capacity. The hydrogen storage capacity of HAZn2 was found 3.26 wt% for 10‐bar pressure at 200 °C. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号